



































































































































TheYamabeProblem

Recall the famous UniformitationTheorem which says that

Eveyclosed Riemannian two manifold is conformallyequivalent to another
with constant sectionalcurvature

This is an affirmative answer to a natural question Indeed a conformalchange
ofmetricamounts to achoice of onesmoothfunction Ctu conformalfacto which on
a two manifold is being asked to satisfy one condition that its scalar curvature
a single function be constant Indeed recall that for a 2 mfd we have tht
Rm T S g g so that the scalar curvature determines thesectional curvature

In higherdimensions asking for a single conformal facto to control all of
thesectional curvatures is highly overdetermined since thefull curvature tensor
depends on more than just 5 Recall that

I mm 3 Rm Ric g IS grog
ti

j mm y Rm w t Ric gt Sg of
where W is the conformallyinvariant Weyltensor

Indeed Rmhas NY componentfactions which we are attempting to influence
with the one degree of freedom afforded by the conformal factor

In higher dimensions the naturalresult to ask for is therefore

TheYamabeProblemcili let Mcg be a closed Rm mfd of demM n 3
Can one find a metric g conformal to g which has constant scalarcurvature

Fortunately the answer is yes However Yamabemade an error in hisproof and
it took about 25 years far tu problem to be resolved via the work of
Thudinger Aubin and Schoen

Here's how our exposition ofthis story will play out

Patt Preliminaries

Parti The outline oftheArgumts
Part It TheYamabeProblem on theSphere

Pantie Solving the Problem when X M c X Sin

port T Reduceng to the case 2cm ca Sin






































































































































PARTI Preliminaries

let Mcg be a closed Rm mfd ofdimM n33 and suppose that e2fg
is a metricconformalto g here FEC CMJ Here and throughout quantities
on Mig will be woken with N's and corresponding quantities on Mog without
We beginby observing how key geometric quantitiesevolveunder conformalchanges

Metric g g e2fg for fec Cir Volume Luol enfdual.gr

ChnistoffelSymbds high tzghltdigejtdjg.ee 2egij
to Fiji right S Lift Shi2jf gijghlJef

Riemanncurvaturen Note Our Laplacian Convention is Sf Livgradf triff

Rm RT e2f Rm CO2f g Gf df g Hft gong
Ricci curvature

Ric Ric Ric Cn 2 tf t 2Cdf tf Sf Cn 2 IdfIgf g
scalar Curvature

S J e Zf S Zen Dsf Cn 1 n 2 IdfIof

Schoutentensor i A Ric g

An A 02ft If tf

tzldflggweyl.tnw Rm A g Tv elf w

NoticeThis lastformulashows that Tv is conformally invariant
SomefactsabouttheWeyl tensor that will be important later
on me that

If u 3 W O
If u 4 W p o CM g is locally conformllyflat atp

Now considerthe formulaabove for scalar curvature We can simplify it
if we write elf pts 2 where from here on p 2n n 2 Then

5 4 P cusp Sy y P 04

where Cue
4

z and D Cust S is the conformalLaplacian
From this we see that solvingtheYamabe Problem is equivalent to finding
a smooth positivesolution to thenolineareigenvalueproblem
the tamabeEquation Of XP P l






































































































































for some 2412 which will be theConstant scalar curvature of the
new metric of GP2g
As an onsite O is conformleyinvariant in the sense that under a comfortchange
g e'f g g e Iff e u Hut C Mn

If instead we write g PP 2g then the conformed invariance takestheform

8 y u ft P Dn

PARTI The Outline of the Arguments
Yamabe's first observation was tht is tu Euler Lagrange equation

for tu Q functional

fan10912 542 dual g f 5duoljQ 4 QgCee Q gIl911 f volg m Up
with TffPg varying over the conformal class of g In the third equality

we use 5 6 PD 4 46114 92 Y P and Luolg
P 2 Judge 9Ptual

Claim Let 4GW 21M be a criticalpointof Q Thenthere is some
a IR sat 4 satisfies Moreover if 4 is a minimizer and
Hullp 1 then

I Ilm inf Que Pew 2cm
since Q isctson W inf Q Y 4G CrCM IR O
Quel Que anddensity

Mf g g is conformedto g
Remark X M is called theYamabeConstant and is evidently an invariant

oftheconformal class of Mcg since Qg194 Qqp2g Y

P rofofClaim Let SECEcm Then if 4GW2cm is a criticalpointohQ

O Q cette fncnloetto.SI tgjjueg
Hiett511,3

If.co
t t

C4EtSdualg
H9Hp2f2fCn 09.05 545Judy fan1041215422valg 2114142PSST I

11411ft






































































































































O ftp.z 5CD4 QC41YTIpz duolg

By arbitrariness of 5 we conclude that 4 solves DO with 1 9,4 2

If now 9 is a minimizerwith 114Hp 1 then X QC4 X M

We should note that this variationalproblemyields a finite d M since
by the Holter and SobolevInequalities

fculoerts S C 11511422 O
11411 f

while 2cm SQL 1 Valen42t
E D

So to solve theYamabeProblem it suffices to find aminimizerof
X M However we can't use thedirectmethod because amusingly
tu exponent p 2 1 372 It appears in Yamabe's Equation is exactly
the critical Sobolevexponentwherethe compactembedding w t LP fails
As we will see later Yamabe's approach was to study the sub control

problem with exponent ofa p Ztt which is solvableby thedirectmethod
The hope is then that the subcriticalsolutions converge to a solution of the
TanabeEquation withcriticalexponent Yambe had claimed aproof of this
in 1960 but in 1968 Trudinger discovered a falseclaim Ya abe had
assertedthevalidityof uniform Cadestimatesfor thesequence atsubcriticalsolutions
but this even fails on agro It would take until 1984 for Trdryer
Aubin Schoen andothersto rectifytheargument via the following results

theorem YamabeTrudingerAubin If 21M ICE then a positivesmooth
minimizer at ICM exists solving the YomabeProblem on M

The Idea Strictinequality gives us room to accountforerror termsas a result
of the lack of compactness

Theorem Aubin If Mig has dmm n 36 and if M is not locally
confemally flat at some pen then 2cm s X Ssn

TheItea Byusingtestfactionsinspired by the resolution oftheproblem on 8h
one can show directly that 2cm E Qal ICE

theorem Schoen If Mig has Lim n C 3,4is or if M is locally
conformally flat at some point then 1cm cX Sm
mmkew th E and rigiditywithsphu

TheItea Theremaining cases can'tbe tackled by localestimatesbutSchoen
discovered how to buildthedesiredtestfunction from the Green's function
of D Fascinatingly hisproofrelies on the PMTfrommathematicalrelativity






































































































































Parti TheYamabeProblem on the Sphere and the Sharp SobolevInequality

The case M Sin is interesting because we can not onl give an explicitsolution
to thevariationalproblem but also because it is cent to understanding the
problemfor general M Even further it hasdeep ties to theSobolev Inequality
making the YanabeProblem on highly relevant to analysis atlarge

In this section we will see how theproblem is resolved on the standard
round metric minimizes the Q f tional and its confoml metrics are theonly
metrics on with constant scalar curvature We will in particular see how
theYamabe Problem on is equivalent to the problem of determining the
optimal constant forthe Sobolev Inequality on IR This gives twopossible
methods forsolving theYamabe Problem on eitherdirectly or by finding the
sharp Sobolev constant Lastly we show that a provides an upper boundfor XM with M any compactRmmfd of dimm 3

StereographicProjectioni

Consiter 8 GIR with its roundmetricgo induced by gsta on R Let
N Co 1 bethe north pole of Sin and recall that themapping
Y EMN 112 given by

s s S x xn xi

is a conferment diffeomorphism with f go 4 1 1 1252g sty
Fornotational convenience letp y 1 Rn 849N

We can also write this as p'tgo 4UP 2 gstd where fo a 0

nah Itf
and as always p 2

2
The pointof introducing us is to

describe how go changes unto confond diffeomorphisms of thesphere
Indeed the group at conforml diffeomorphisms of is generatedbythe
rotations in 0Corti andmapsoftheform 4 Tv 4 4 Say with
Irisa Rn 1124 translation by velRh and dilationby a o respectively
We have in particular that

poss go Stop go 4nF2gstd
There are now two ways in which wemayproceed so lets explore bothIn short the Sin Yamabe Problem is equivalent to theproblem of
sharpening the Sobolev Inequality on LR One can thusproceedby solving
one problem on the other






































































































































Routeing theYamabeProbkin The Talenti AubinApproach

Recall thefamous Sobolev Inequality on112 htt cCc Rh Iep n p ITw Ruru
11411
p
E Cn110411p

It turns out tht the conformlinvariance of Its makestheresolution of theYamabe
Problem on equivalentto thetask of determining thesharp coefficientcm in
this Sobolev Inequality

To see this let 4 c CoCSin and define T hip 4 Then recalling
thefacts that

p INN go IR Yup 2dx is an isometry

p PP p y 0904

Org XY Qg U for every 2 C1121903

Qg op Q p ng e toe cnn.IR o
0

we obtain

Q.gs FI Qgsta uip 4 Qgs yFu.p 4
Qyui 2gstg PM
Qp g ft
ago 4

To prove we compute directly fromthetefinition of Q and use
the equation DQ 56 P l To prove we again compte directly from
Qgo using and tu fact tht S is isometryinvariant to compute that

go 6
MEN 41041g t S duelgo

fgm 141Pduolgo4p

fµncnlW p4tfgotp p4Tdualpago
p

ftp.lp 4pagoduolpago4p

Qpago pH






































































































































The upshot is that Orgs T has a simplerform as thescalar
curvature ofCR gsts vanishes Thus

I h infoQ.gggo 6 infyecocs.in Qianga T

Jon109Rdx
infye En fµ 16 1Pdx4p

By approximating it with cutoff functions it follows that

X infeecquay cnH04II4115

TheoremilTalentisAubi let a33 and

on inf new 4112

Then of Cui n n 1 with and minimizes are exactly the constant
multiples and translates of Ud as defined above

Thus thesharpSobolev Inequality on 112 is

11h11pEton110mHz n F In 110mHz Knew 2 Mi

So Talenti andAubinthussolved the Yamaha Problem on thesphere and
gave an explicitvalue f X En Theirproofs independently discovered but
essentiallysimilar consistmostly at technical GMT

Corollary If Mig is a closedRmmfdwith n 3 then 11M EN

This is obtainbytestingQg with the red above localized to moral balls






































































































































Patti Resolving the Yamabe Problemwhen 1cm cell'S
This part representsthe most analyticsite of theproblem and j

as in the last part there are multiple paths bywhichwe may proceed It'll
outlineboth whichseekto prove the following

theorem YamabeTrudinger Aubin

Suppose Il M s X Then a minimizerof ACM exists thus
solving the YamabeProblem on M

The intuitionhere is that although the embeddingW 4m14LTCM
is not compact a minimizing sequence which fails to converge to a

minimizer would have to concentrate or bubble at some point of M
and this would add a Nish to the function Since 2cm L dCES
this sort of concentration shouldn't beable to occur and we can

hopefor convergence to a minimizer

The first approach we'll outline is due to Lions in 1984 as it
beautifull exhibits the bubblier henomenon In fact it says generally
that a Founded sequence in LK m which doesn't convergestrongly
must concentrate at countably manypoints and that the amount of
concentration ateach point can be controlled via a Sobolev type inequality
formeasures We'll use the SharpSobolev Inequality on IR's to obtain this
control Thus we conclude that even though we lackcompactness we
still have a pretty precise understanding of how badly compactness fails
and can use the strictinequality in 1cm ca 8h to absorb the effects
ofthefailure

Thesecondapproachwe'lldetail is closer to Yamabe's original approach
and is due to Yamabe andcompletedbyTrudingerandAubin The idea here
is veryinteresting from a PDE perspective and is based on the idea tht
the subcritical equations

06 asps 2E Sc p 2
associated to the perturbed functionals

Qs 4 E 6 1114115

are easy to solve ie positivesmooth solutions 4g with Is inform see
always exist The difficulty and the site of Yamabe's error is in showing
that these subcritical solutions converge to a solution of the critial equation
with S p 2K He had claimed the validity of a uniform I'd estimate
for the 4s in the hope of applying Arzela Ascoli to obtain a limit
However such a uniform estimate is false in particular on
Nonetheless when 2cm sa sin these estimates to hold as there is
space to allow fr the error terms






































































































































TheFirst Approache Lionentation
Compachesslemmalemmai Lions

let uh E W 2cm be uniformly bounded so that un new 2cm
Up to subsequences

vii 10mn12dooly Jr
Un Lunt drolg V

Moreover
µ 10m12 foolg t on Eyed

k
Spj

v 1h12 du olg t I g LjSpj
where J is countable and pj c M j dj CCo co

Beforepresenting Lions proofof the above lets seehow it helpsus prove
the main theorem of this section

proof of theTheorem
Let 4h CW M be a minimizingsequencefor NM andWLOGtake119kHz 1
Bythe Sobolev EmbeddingTheorem w 2 M cc L2 M so up to a subsequence

4h Ye LUM while 64 in both W 2cm and L CM byBanach Alaoglin
In particular Fe know that 1141121 Eliminf119mHz L so at cCoD
so that 114Hz t We aim to show that t 1 because then we
know that he 9 in 227M and this will allow us to conclude that
4 is a minimizer ohHM in W 2 M

Indeed 9 minimizes 11M iff it minimizes

Elle falter 842holy 2cm 119112
2

on w 2cm just re writethis as EC4 Ql 4 NMB1141122A Evidently
our infimizing sequence 4h3 for Q is an infimizing Sequence for E
and since

E 4 fairer 842duolg ICM
c liminfffcnhqrtsyzduolg X.cm 11 112

2

limit E Qu

we see tht 4GW LM is a minimize of E and so also of Q
Here we notice how crucial it is that we havestrong convergence in L2 far 9h
If the limit 4 were to lose mass then we could lose lowersemicontinuity of E
and wouldn't be able to conclude that 4 minimizes






































































































































So let's turn to showing that t 11411245 1

By Lions Lemma

2cm lim Qun lim fCn104421545 Ivory
3 f cult912 1542 Luolg t cu o Egg

k

X Sin cmon Que E42 t XC Egg k

X M t X Egg k

2cm that NEYCI 442 2 t

since 212AcCo I 3 am tht Wish l t42k Eg 542
t

1cm tht tf Sin l t42k

since I him unCN UCM 1141124ft Is dj t t Ejaj Applying
our assumption that I NM we obtain

2cm Ekholm NSM l 442 3 NM flat l t542331 M
Equality tells us that t c 0,73 If t o 3 would be strict Thus E 1

zoµ
f t tht i tylor

Now we have in hand a minimizer 4GW 2cm oh Q By thestandard
repertoire ohellipticregularity which we'll see when we considerthe second
approach it follows that 9 is smooth andpositive thus solving the
Yamabe Problem when 2cm ca En

Be

With this in hand lets now return to Lions concentration Compactness
Lemma and show why it holds






































































































































Preorfethionsilemma i Theproofofthe result on M followsfromthe corresponding
result on a bounded subset of 1127using normal coordinatesand a partition
of unity Thus its most instructive to focus on the proof of the result
in IR

Set vii un u Wu lunt LUI tx in ITunl'tx By
assumption Uh 00 in W Z and L2 By the uniform W 2 bounds
on Un n the compactness theorem for Raton measures yieldsRadar
measures w and Jr so that Wu w and ith Jv
It can beshown that Wh 10h12 txt OCI tune up dirt 011

Fix EECECIRD and use the Sobolev Inequality to obtain

52 2w limffluul 2 dx Elim info floeson 12
Eliminf f521004242
Loza 5 try

2

Note tht this computation technically is true up to a subsequence oftheUn
on which the compactembedding W 2 cc L2 ensures Un O yielding

11015 112 115OvullztHOUTENz

liminf 110 on Hz e limiuf 11500412 11511earn J
This establishes a reverse Ho Hr Inequality for W and F

on 11511Leturnw E 11511Learn q HEE CFCIR

We apply this to a sequence ofSueCEGRY approximating In for an

open REIR which yields
on cocritterer

Thenon linearityofthagsaconustral is what
forces w to be supported on

a countable set I feed J is finite and so can have
atmost countably many atoms pj If X ClRh pj3 then we
can find an open r ax with Jv Cr E0h2 and so

13 offer 3 WW2 were






































































































































Thus we cut on 112M pj and the Lebesgue Besicoutch Theorem tells us
that Dfw 0 af a At au xc

IRXEpj3Dwcxt eniggTEB.EE eeinmigfon2fvcBrant
1

0

So w Djw vt WE WE where thesingularpart w is supported on
the atomicpoints Pj Thus

w g djSpj
which proves that as desired

vii 1mn12 tx 1h12tdy t Eg djSpj
To prove the remaining statement fix one of the Pj and apply
our reverse HolterFreudity above with 5 c CT CRU satisfying
Pj I sptff BECp as r o

r

onzajkt ozwcpjjkt l.infoone f5Idw

lingionffsion
if Cpj

Thus
if of Eg 2 2 8Pj

Now observe that

in IOun Duplex ITunert10h12 24Jun Pu DX
Nut four ZCOuu.ru DX

so by uniqueness of weaklimits

I Pul't x p
and hence y 10h14x of Eg2j Spj






































































































































Parti Reducing to the case 2cm cousin

In this finalport we showcase theresults of Aubinand Schoen which
togetherfully resolve theYamakeProblem The hypotheses of theirresultsperfectly
dovetail and consist of showing that we can findsuitable testfunctions on M
which come from thesphere in Aubins case and from the Green's operator of 0
in Schoen's which have Q X SM Let's start with Aubin's result

I Aubin If Mig has dmm n 36 and if M is not locally
conformally flat atsomepen then 1cm s X Ssn

To prove it we'll utilize the following extremely useful construction
Theorem Graham ConformlNormal Coordinates

Let M be a Rmmfd and pen For each 1T 32 there is a
conformalmetric g on M such that

tetg It rk

where r 1 1 is the radial distance in g norml coordinates at p
If K S then in these coordinates we also have 5 0 r2

and AS lwl46 at p

Remake Theideahere is that howl coordinates are already quitenice formany
computations but we have even more freedom to search forthe best
no ml coordinates in an entire conforml class since 7 m is invariant

proofofAubiistheoernihetp.CM be a point atwhich Wlp 0 and fix
conformal norml coordinates at p fo k 32 as big as weneed in the
arguments to follow SupposeBzp p is a mound ball contained in the
coordinate patch and fix a cutoff function ne m with

XBp E N EXBzp
ionier

Now let acry
n
one Yp e c cry

where heG Effi from earlier We willshow that
E 20 can be chosen so small that Q X En

Note tht by the work at TalentiandAubin we know that

X Sin
fan lower
Tine

non 2 GYE
since we can compute that She n n 2 UE t We now proceed
to carefully estimateeach part of thequotient Que






































































































































Seeing asthough he is radial and in normal coordinates gnr 1
we have that

18912dualg 1 124122 5 12412 Herk Ix

true12txt Cfpprk1Duel'dx

Bp
1 4314 It Crk dx

computing directlyfrom tutefinitionof ne shows that

I 2nd E n 2 Ek 2K ri n

and so it follows immediately that the lasttwo integrals are OLE
2

Next integrate in parts inthe firstintegral using Sue nth 2 net

Spyguer n Lu 2 fBpUE t BpUe2rUE
n Lu 2 fBpUE

as True CO Thus since It 2T L

SBplower non 2 Signet fBpnE

Hsin Gen
Altogether

fmpypjuodgezc.sn S3puE t Cen 2

a
Next observe that

fmyktvdg fppnftetgmdxtfpzpyzpcnueftetg.MN

SBPUEdx cfpprknfdx fqygpnftcltcrt.MX

Sqn Tx Cen


















Lastly we estimate the scalar curvatureterm Choosing at least K S
ensures that 5 042 and bScp 1W p1216 Since at p we
have Rijn p O and Zug p o it follows that Scp S p o fi
Thus

5 IS p zixit OCP
and we obtain

592JudgeCltCrufBzp IS p x 063 nine DX

Elitch fBzpSijCpJxixJy2uEdx

IN ofzpn2nEr3dxEcc1 E I

r lH itch foz2uEf ns.ijcpjxixjdtln tr

tcfniuif.int da tr
O

Herk wn
sscpjffzufnntidrzpffn.krxixd.dkw

r Sij Cwm f vine rumor

Technicallemmai Let K n As EDO
Zp

ICE fo NE rhtk Ijn
satisfies

ICE
O 2

n kty
O chtylog El n kt4
en 2 rickety

4
Applying this to thefirstintegral we have
w sscpjffzuerntidre clwcpy.ggnleos4 fnn f
and in thesecond

cwn if.fruernt2gr
OLES n 7

OCEsteogel Ces

Thus
fmsqzjualggg clwcpsrdloge.lt OCES n b

ClwLpj12q4 t 0 ES n 7



Altogether we conclude that

fcuioerdvalgtfspyvol.ge
QC4

Samuelg 42K

E Nin GpuE n t Cen 2

t Cherry
CIW p 12C Lloyd OLES n f

Clum'd to Les n 37
212A

Squeak Holes

218 clwcpdkdleog.cl to Ces n 6

X En clwcpjpe4 OC.es n 37

Since IWcp I 20 for small enough so we obtain our desiredresult

a
That just leaves us wonderingaboutmanifolds which have druensions 3.4 or S

or whichareLocconformally flat Schoen was able to dispensewith all of
these cases in one result To begin we need to return to the topic of
stereographicprojections

As before we'll set D SEMEN R as the standard stereographicprojection
but this time we focus on the confa.nlfactor G on 8419N definedby

Y gs GP 2go
Since Rhgsts hasvanishing scalar curvature

O DgoG Cudgo Gt n Lu D G on SEMEN

In fact it can be shown that this confoundfactor G is theGreen'soperator
forDgoat N Thatis

Dago G Sn on 8h



Now here is Schoen's idea which reverses the abovesequenceofobservations
On a closedRunmfd g we can provethe existence oh theGreen'sfunction G to Dg If it were known to be positive then we could use
it as a conformalfactor by fixingpen and setting

GP 2g on A ml p

This gives a map 0 a5 Mig which we call In stereographic
projection oh M from p This is all done so that like in the Euclidean case

Sg O on m
Now if 21M 30 then one canshow that Dog has G 0 Since

theYam abe Problem is easily solved if X M c 0 we can assume

from now on th t G 0 Fix pi M a conferredmetric realizing
Graham's confound normal coordinates i3

theorem Suppose t.g as abone has n 3 his or is conformally flat atp
Then I C s t

G re n C 0 r as rb 0

Remote f Ok rm iff Laf E nm H1 fr any Kl Ek

Just one interesting and useful consequence of this therein is that rt
is asymptotically flat at co we recall

DIE A Riemmfd Nih is asymptotically flat to order T 0 ifthere
is a decomposition N N ON such that No is compact Ncs is
diffeomorphicto KNBR f some r o and

gig Sij t 0 p as pros

Here p distt p
Using theexpansionof G we can give an expansion of J in inverted novel
coordinates 2E r 2Xi which throw p to is Indeed on te n ont
bill Typ we let 121 P and find that recall g Gp2g

gijlzl ftcpZ n.to pm
P 2
Sgt 0 p2

and so we see that ig is asymptotically flat to outer

E I z II e e confanly flat



Now let'sproceed tothe constructionof our testfunction using the
understandin we've developed about how the for reaches oh Trig
behave To start set

U 7 a ME 7 if D 121312
ME R if f 121 ER

where again right 2 is a dilated Sobolev extreme
functional on 1124 thefame now is to take E 71 to spread me out
and track what happens to Qg Ue
Seeing as though he is radial as E3 we shouldexpect that glue
will depend heavily on what looks like on very largespheres To this end
we define

hlpknwntpn.if.gg dog
VolgCS
uol.gs Sig

Using the metricexpansion obtained from the Green's function expansion
we discover that

up f p
k 0 Cp

h t
k admensionlquatt

in the cases where M is Ioc conf flat or d in 3,4S er is called thedistortion coefficient oh I and it is what ties tu Yamake Problem
to general relativity But first we notice that this expansion enables
us to obtain an estimate for QE 2 C o SI

glue E 2 SM Creek Ole h
as e co

Thus knowing 1why o would complete the argument The remarkable connectionwhich we need is the following resultproven by Schoen and Yau and the
fat tht with our hypotheses on M N 2mtg

ThepositiveMassThearern Let Nig n 3 be asymptotically flat to
order I n 2 12 with Sg 30 Then mcg 70 with equality iff
Nog is isometric to GR gsto

The conclusion to theYamahaProblem is thus as follows

If Mig is isometricto IR gst then it is certainly conformed to SMgo
and we are done Otherwise our stereographicprojection argumentensured
us that Sg 0 so the PMT yields mtg Ev 0 Taking E 22
cellars us to conclude at last tht

2cm Cdl 8


